TEST 1, PROBABILITY I, FALL 2016

1. Given a probability space (Ω, \mathcal{F}, P), and a pair of Borel measurable functions $f, g: \Omega \rightarrow \mathbb{R}$, such that $f=g$ almost everywhere with respect to P, show that $\int f(\omega) d P(\omega)=\int g(\omega) d P(\omega)$. (please follow all the necessary steps from the definition of integral)
2. Let X be a Gaussian random variable. Please estimate from above and below $P(X \leq 10)$.
3. Given a probability space $(\Omega, \mathcal{F}, \mathrm{P})$, and a random variable X with bounded fifth moment, prove that for $t>0$

$$
\mathrm{P}(|X|<\mathrm{t}) \geq 1-\frac{\mathbb{E}|X|^{5}}{\mathrm{t}^{5}}
$$

4. Let X be a random variable taking values on the interval [1,2]. Find sharp lower and upper estimates on the quantity $\mathbb{E} X \cdot \mathbb{E} \frac{1}{\mathrm{X}}$. Provide an example of a random variable for which the lower estimate is attained. Provide an example of a random variable for which the upper estimate is attained.

Hint. For the lower bound, justify and use the inequality

$$
a b \leq \frac{1}{2}\left(\frac{a}{2}+b\right)^{2}
$$

